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Abstract

Arc Routing Problems (ARPs) are a special kind of Vehicle Routing
Problem (VRP), in which the demands are located on edges or arcs,
instead of nodes. There is a huge literature on ARPs, and a variety
of exact and heuristic algorithms are available. Recently, however, we
encountered some real-life ARPs with over ten thousand roads, which
is much larger than those usually considered in the literature. For these
problems, we develop fast upper- and lower-bounding procedures. We
also present extensive computational results.

Keywords: vehicle routing; arc routing; combinatorial optimisation;
integer programming

1 Introduction

The optimisation of vehicle routes is of crucial importance in modern society,
and there is a huge literature on models, theory, applications and algorithms
[23, 43]. Arc Routing Problems (ARPs) are a special kind of vehicle routing
problems, in which the demands are located along the edges or arcs of the
network, rather than at the nodes. Typical applications of ARPs include
postal delivery, meter reading, refuse collection, salt spreading and snow
removal (see the books [17, 18] and the surveys [16, 35]).

Recently, while working with an industrial partner, we encountered some
very challenging real-life ARPs. These problems had multiple vehicles, ca-
pacity constraints, intermediate facilities, a time deadline, multiple objec-
tives, and a combination of one- and two-way streets. Moreover, some in-
stances had over ten thousand roads, which is much larger than those usually
considered in the literature.
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To further complicate matters, the industrial partner wanted a procedure
that could produce reasonably good upper and lower bounds within a couple
of minutes. This was for three reasons:

• Such a procedure could enable the sales representatives to give con-
vincing demonstrations in real-time, to attract new customers.

• The expert trip planners in the company had stated that they would
find tight initial bounds extremely useful, so that they knew what to
aim for.

• It was hoped that the planners could take the feasible solutions from
our procedure as a starting point, and then make adjustments to make
the trips more “visually attractive” (see [41] for a discussion of visual
attractiveness in vehicle routing).

The ARP in question is a (bi-objective) Mixed Capacitated Arc Routing
Problem with Intermediate Facilities and a Deadline, or MCARPIFD for
short. Although there exist a few heuristics for the MCARPIFD in the
literature [30, 33, 34, 46, 47, 48], the severe restriction on computing time
meant that we could not use any of them. Accordingly, we devised our
own procedures, which are specially tailored to give good bounds as quickly
as possible for real-life instances. We were pleased to discover that our
procedures were highly suitable for the intended application.

The rest of the paper is structured as follows. Subsection 1.1 presents
our notation and terminology. Section 2 is a brief literature review. Sec-
tions 3 and 4 describe our upper-bounding and lower-bounding procedures,
respectively. Section 5 presents the computational results. Finally, Section
6 contains some concluding remarks.

1.1 Notation and terminology

We are given a mixed graph G = (V,E ∪ A), where V is the vertex set, E
is the set of (undirected) edges, and A is the set of (directed) arcs. This
graph represents a road network. The nodes are numbered 1 to n and have
known coordinates. Node 1 is called the depot. We are also given a set
ER ⊆ E of required edges, a set AR ⊆ A of required arcs, and a set I ⊂ V
of intermediate facilities. We call L = E ∪ A the set of links, and let LR

denote ER∪AR. We will call the weakly connected components of the graph
(V,LR) “R-components”.

Each link ℓ ∈ L has a positive rational traversal time tℓ. Each required
link ℓ ∈ LR has a positive rational supply qℓ and servicing time sℓ. A fleet of
identical vehicles is located at the depot, each with positive rational capacity
Q and time limit T . If a vehicle is used on any given day, it must depart
from the depot, service some required links, go to an intermediate facility to
unload, service some more required links, and so on. When the vehicle has
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unloaded for the last time, it must return to the depot. Each required link
must be serviced by exactly one vehicle. The load of each vehicle must not
exceed Q at any time, and each vehicle must return to the depot no more
than T hours after it departed.

The problem has two objective functions. The primary objective is to
minimise the number of trips, but a secondary objective is to minimise the
maximum trip duration. The reason for the second objective is that, if
one trip has a significantly longer duration than another, then the drivers
may complain that the solution is unfair. An additional peculiarity of the
problem is that the number of trips must be a multiple of some given positive
integer h. For example, if collections are made Monday to Friday, and each
household has a collection once every two weeks, then h is set to 10.

Traversing a link without servicing is called “deadheading”. The set of
nodes incident on at least one required link is denoted by VR. Given a set
S ⊆ V , L(S) denotes the set of links with both end-nodes in S, and δ(S)
denotes the set of edges with exactly one end-node in S. We let δ+(S) and
δ−(S) denote the set of arcs leaving and entering S, respectively, and ∆(S)
denotes δ(S)∪δ+(S)∪δ−(S). We let LR(S) denote L(S)∩LR, and similarly
for δR(S), δ

+
R(S), δ

−
R(S) and ∆R(S). For simplicity, we sometimes write δ(v)

instead of δ({v}). A node v is called “R-odd” if |∆R(v)| is odd. Finally,
given a set F ⊂ L and a vector x ∈ RL, we let x(F ) denote

∑
ℓ∈F xℓ.

2 Literature Review

The literature on arc routing is vast. For the sake of brevity, we cover here
only papers of direct relevance. For further details, the reader is referred to
the books [17, 18] and the surveys [16, 35].

2.1 The Capacitated Arc Routing Problem

Golden & Wong [24] introduced the Capacitated Arc Routing Problem or
CARP. It is simpler than our problem, since (a) A is empty; (b) there are
no intermediate facilities, and (c) there is no time deadline. Instead of times
se and te, we are given a deadheading cost ce for each e ∈ E. The objective
is simply to minimise the total deadheading cost.

Golden and Wong showed that the CARP is NP-hard in the strong
sense. Current exact methods can cope only with instances with up to
around 180 required edges; see [7] for a survey. For larger instances, various
heuristics and lower-bounding procedures are available; see [15, 40, 45, 49]
and [1, 4, 9, 32], respectively.

Among the many heuristics, we mention the one of Ulusoy [44]. It is a
“route-first cluster-second” heuristic (see [5, 10]). The idea is to construct a
single “giant” tour, that visits all of the required links, and then “split” this
giant tour into segments that can be traversed by a single vehicle. The giant
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tour is constructed using a heuristic, but the splitting is done optimally, via
a series of shortest-path problems. An improved version of this heuristic,
suitable for large-scale instances, was given in [49].

Among the many lower-bounding procedures, we will be interested in the
following linear programming (LP) relaxation, which was proposed indepen-
dently by Letchford [28] and Belenguer & Benavent [6]. For each e ∈ E, let
ye be a general integer variable, representing the total number of times edge
e is deadheaded. Given a set S ⊆ V \ {1}, define

k(S) =

⌈∑
e∈ER(S)∪δR(S) qe

Q

⌉
.

Note that k(S) is a lower bound on the number of vehicles that need to go
from V \ S to S. A valid lower bound for the CARP is then obtained by
solving the following LP (either exactly or approximately) with a cutting-
plane algorithm:

min
∑

e∈E ceye

s.t. y(δ(S)) ≥ 2k(S)− |δR(S)| (S ⊆ V \ {1}) (1)

y(δ(S)) ≥ 1 (S ⊆ V \ {1} : |δR(S)| odd) (2)

ye ∈ R+ (e ∈ E).

The constraints (1) and (2) are called capacity inequalities and R-odd-cut
inequalities, respectively.

We remark that the y variables are “aggregated” over all trips, and
therefore do not give us information about individual trips. As a result, one
cannot obtain a valid formulation of the CARP by adding an integrality
constraint to the above LP.

Separation routines for the capacity and R-odd cut inequalities can be
found in [6, 9, 32]. We remark that Martinelli et al. [32] used the inequal-
ities within a dual ascent scheme instead of a cutting-plane algorithm. In
this way, they could compute strong lower bounds for instances with a few
hundred nodes and edges in reasonable computing times.

2.2 Other relevant ARPs

Li [29] considered a variant of the CARP in which all required edges must be
serviced by a given time deadline. (We call this the CARPD.) He devised a
simple constructive heuristic, along with a lower-bounding procedure based
on the solution of a series of matching problems. Letchford [28] obtained
improved lower bounds for the same problem, using cutting planes. A local
search heuristic, suitable for instances with thousands of nodes and edges,
was given by Wøhlk & Laporte [49]. We remark that Eglese [20] devised a
heuristic for a multi-depot version of the same problem.
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The mixed CARP, or MCARP, is the generalisation of the CARP in
which both edges and arcs may be present. Heuristic approaches, based
on constructive heuristics and genetic algorithms, were described in [8, 27].
Effective lower-bounding procedures, based on LP and cutting planes, were
presented in [8, 25]. Lacomme et al. [27] gave a heuristic for the MCARP
with turn penalties and a route-length constraint.

To our knowledge, the first paper to consider ARPs with intermediate
facilities was Li & Eglese [30]. They devised a constructive heuristic for
the problem that we called the MCARPIFD in the introduction. Mourão &
Amado [33] presented a different constructive heuristic for the same prob-
lem, along with a lower-bounding procedure based on the solution of a trans-
portation problem. A local search heuristic was later proposed in [34], but
the heuristic was rather slow and strugged with instances having more than
a few hundred nodes. Additional heuristics, suitable for instances with a
few thousand nodes, were later presented by Willemse et al. [46, 47, 48].

Some authors have considered the undirected version of the MCARPIFD.
Ghiani et al. [22] developed two constructive heuristics, a local search heuris-
tic, and an LP-based lower-bounding scheme. Some additional heuristics
were given in [21, 39].

We will also need a known result concerned with the Directed Rural
Postman Problem (DRPP). The DRPP is the special case of the MCARP in
which E = ∅ and there is a single vehicle with infinite capacity. If the DRPP
has only a single R-component, then it can be solved in polynomial time via
a reduction to an (uncapacitated) minimum-cost flow problem [19, 31].

Finally, we mention a couple of relevant papers of our own. In [12],
we show that one can use Euclidean distances instead of real road distances
when solving certain node routing problems, while incurring only a small loss
of quality. In [13], we present a method, called sparsification, for improving
solutions to another vehicle routing problem. We will adapt both of these
ideas to our problem (see Subsections 3.1–3.4).

3 Upper Bounds

In this section, we present a fast heuristic for our version of the MCARPIFD.
The heuristic is of “route-first cluster-second” type, but includes several
enhancements to improve both speed and accuracy. The heuristic has seven
“phases”, which are described in the following subsections. Throughout this
section, m denotes |LR|.

3.1 Tour construction phase

Our heuristic begins with the construction of a “giant tour” through the
required links. To do this, we use a procedure similar to the well-known
“farthest insertion” heuristic for the TSP [42]. The differences are (a) we
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have to consider the orientation of each required link when we insert it into
the giant tour, and (b) we use planar Euclidean distances instead of true
road network distances (as in [12]), to avoid solving all-pairs shortest path
problems in G. The details are given in Algorithm 1.

Algorithm 1: Giant Tour Construction

input : Set of required links ℓ1, · · · , ℓm ∈ LR, planar coordinates of
all nodes in VR

Let GT be an initial giant tour, in which the link ℓ1 is traversed, and
the vehicle deadheads back to its starting point;
Create a one-dimensional array of length m, called dist;
for i = 2 to m do

Set dist[i] to the Euclidean distance between the midpoints of
ℓi and ℓ1;

end
for j = 2 to m do

Among all links that have not yet been inserted, let ℓ∗ be a link
with maximum dist value;
Insert ℓ∗ into GT, choosing the position and orientation that
causes the smallest increase in the (Euclidean) length of the
giant tour;
for each link ℓi that has not yet been inserted do

Let Eudist[i] be the Euclidean distance between the
midpoints of ℓi and ℓ∗;

if dist[i] > Eudist[i] then
Set dist[i] to Eudist[i];

end

end

end
output: Giant tour GT

Note that the algorithm takes as input the planar coordinates of each
node in VR. (We were able to get these coordinates from our industrial
partner.) One can check that the algorithm runs in only O(m2) time and
O(m) space.

3.2 Local search phase

The giant tour is then improved, if possible, with the local search procedure
described in Algorithm 2. This procedure is a variant of the well-known “λ-
interchange” neighbourhood for the VRP [38], but tailored to work quickly
on large-scale MCARPIFD instances. In particular, the procedure takes
only O(m2) time and O(m) memory.

We remark that we use Euclidean distances in Algorithm 2, instead of
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Algorithm 2: Local Search

input : Set of required links ℓ1, · · · , ℓm ∈ LR; planar coordinates of
all nodes in VR; giant tour GT

for i = 1 to m do
Let ℓ′i be the ith link in the giant tour;

end
for i = 1 to m− 1 do

for j = i+ 1 to m do
if swapping ℓ′i and ℓ′j reduces the tour length then

swap ℓ′i and ℓ′j ;

end

end

end
output: Improved giant tour

real road network distances, just as in the previous subsection. Moreover,
if ℓ′i and/or ℓ′j are edges, then we consider all possible orientations when
evaluating the potential benefit of a swap.

3.3 Shortest-path phase

In the first two phases of our heuristic, we used Euclidean distances to
estimate the amount of deadheading between consecutive links in the giant
tour. The next step is to replace those Euclidean distances with the true
road distances.

As before, assume that the ith link in the giant tour is ℓ′i. The giant tour
starts by servicing ℓ′1, goes to service ℓ′2, and so on. For i = 1, . . . ,m − 1,
we have to compute the shortest path in G from the end-node of ℓ′i to the
start-node of ℓ′i+1. (We also have to compute the shortest path from the
end-node of ℓ′m to the start-node of ℓ′1.) To do this, for a given i, we use
Dijkstra’s algorithm, with a binary heap to update distance labels (see, e.g.,
[2]).

In theory, each shortest-path call takes O(|L| log |V |) time. In practice,
however, it is extremely fast, since (a) the end-node of ℓ′i and the start node
of ℓ′i+1 are frequently identical, and (b) we can abort a given call as soon as
the start-node of ℓ′i+1 becomes permanently labelled.

In the fifth phase of our heuristic (Subsection 3.5), we will need to know
the distance from node 1 (the depot) to each node in VR, from each node in
VR to each node in I, and from each node in I to each node in VR ∪{1}. To
calculate all these values, we run Dijkstra’s algorithm 2|I| + 1 more times.
This takes O(|L| |I| log |V |) time in total. Fortunately, |I| was less than five
in the instances that our client encountered.
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3.4 Sparsification phase

In the fourth phase of our heuristic, we attempt to reduce the length of the
giant tour. The procedure is essentially an extension of the “sparsification”
method in [13] to the case of mixed graphs. The procedure is rather com-
plicated, but we have found that it is very worthwhile, typically leading to
reductions in tour length of over 10% in just a few seconds.

The next step is to construct a digraph G′ = (V,A1 ∪A2). This is done
as follows. Initially A1 = AR and A2 = ∅. Then, for each required edge
{i, j} in ER, we add the arc (i, j) or (j, i) to A1, according to the direction
in which it is traversed in the giant tour. After that, we do the following for
each deadheading arc in the giant tour: we take the corresponding shortest
dipath in G, and add the arcs in that dipath to A2. Finally, we remove from
A2 any arc whose end-nodes lie in the same R-component. Note that G′ is
weakly connected.

We now construct a smaller undirected graph, which we call the “shrunk
graph” and denote by GS . To do this, we take G′, shrink each R-component
into a single (required) node, delete all loops, and ignore the directions of
the arcs in A2. We also delete all nodes of degree zero. Note that GS is
connected.

Next, we compute a Minimum Spanning Tree (MST) in GS , and delete
all edges that are not in the tree from GS . We then check if there are any
non-required nodes in GS that have degree one. Any such node is deleted
from GS , along with the incident edge, and this is done iteratively until no
such nodes remain. Note that GS remains connected.

We now return to the digraph G′, and construct a “sparsified” version
of it. Specifically, given any edge that was removed from GS , we remove
the corresponding arc from A2. Note that, by construction, G′ now contains
one huge weakly connected component that contains all nodes in VR and all
arcs in A1. On the other hand, this component typically does not represent
a tour, due to the presence of “unbalanced” nodes (i.e., nodes for which the
number of incoming arcs is not equal to the number of outgoing arcs).

To find the minimum-cost amount of extra deadheading needed to make
all nodes balanced, we solve a Directed Rural Postman Problem (DRPP).
Due to the result mentioned in Subsection 2.2, this DRPP can be reduced to
an uncapacitated minimum-cost flow problem in G. This problem in turn
can be reduced to O(|V | log |V |) shortest-path problems in G (see [37]).
For ease of implementation, we used the MinCostFlow solver from Google’s
“OR-Tools”1. For the instances we tested, it was extremely fast.

Adding the additional deadheading arcs to G′, we obtain a strongly
connected and balanced component that contains all arcs in A′. Thus, the
component represents a giant tour. To construct the giant tour explicitly,
we use Hierholzer’s algorithm [26], which takes only O(|L|) time.

1http://developers.google.com/optimization
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The sparsification phase is illustrated in Figure 1. First consider the
mixed graph G in Figure 1(a). Required and non-required links are rep-
resented by thick and thin lines, respectively. (In the online version of the
paper, the thick lines are red.) The costs are also indicated on the links. Sup-
pose that the first two phases have produced a giant tour which traverses the
required links in the order (1, 2), (3, 4), (8, 9), (9, 10), (13, 12), (12, 11). Fig-
ure 1(b) shows the corresponding digraph G′, before we remove any arcs
from A2. We see that the arc (12, 11) is in A2, yet both of its nodes are in
the same R-component. So, this arc will be removed from G′. Figure 1(c)
shows G′ after this arc removal, and Figure 1(d) shows the shrunk graph GS .
The edges in the MST on GS are indicated by red thick lines in Figure 1(e).
Now, node 6 is a non-required node with unit degree, so it will be removed
from the MST. Figure 1(f) represents the reduced MST on GS . Figure 1(g)
represents the sparsified version of G′, which only contains required arcs
and deadheading arcs corresponding to edges in the reduced MST. One can
check that links (4, 7), (7, 12) and (11, 8) form the minimum cost amount of
extra deadheading needed to make all nodes balanced. Figure 1(h) shows
the new giant tour in G. It can be checked that the new giant tour costs 3
less than the old one.

3.5 Trip construction phase

Recall that we have a vehicle capacity Q and time limit T . In the next phase
of the algorithm, we construct a collection of “potential” trips that satisfy
both of these restrictions. In this phase, the indices of the links in the giant
tour are taken modulo m. In other words, the link ℓ′i may also be called
ℓ′i+m.

For i = 1, . . . ,m, a trip is created as follows. The vehicle departs from
the depot, deadheads to the start node of ℓ′i, and then services ℓ′i, ℓ

′
i+1 and

so on, until it cannot service any more links due to the capacity limit. At
this point, it visits a node in I to unload. The vehicle then continues to
service links and periodically visit nodes in I, until it cannot service any
more links without violating the time limit. At that point, it unloads one
last time at a node in I and returns to the depot.

Our method to generate trips is similar to the “first-fit bin-packing
heuristic” in [47]. The heuristic takes only O(m) time for a given i, which
makes the running time of this phase O(m2) in total. Once all m trips are
created, we let len[i] denote the number of required links that are serviced
in the ith trip.

For reasons which will become clear in Subsection 3.7, we compute and
store some additional information. Specifically, for a given i, and for β ∈
{5, 10, 15}, we let len[i,β] be the number of links that would be serviced in
the ith trip, if the time limit were decreased by β minutes. Note that the
additional computing time and memory that is required to calculate and
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Figure 1: An illustration for the sparsification phase

store this extra information is negligible.

3.6 Trip selection phase

Next, we attempt to construct an MCARPIFD solution that uses as few
trips as possible, but we temporarily ignore the fact that the number of
trips must be a multiple of h. For this, we use Algorithm 3.

The algorithm constructs m MCARPIFD solutions, and stores the best
along the way. The asterisk indicates the best solution found so far (some-
times called the “incumbent”). The number of trips used in the incumbent
is denoted by N .

In the ith solution, the first link to be serviced by the first vehicle is ℓ′i
and the last link to be serviced by the last vehicle is ℓ′i+m−1 (with indices
again being taken module m). The index k represents the number of trips
that have been selected so far (for the given i), and cu[k] represents the
cumulative number of required links that have been serviced by those k
trips.

Algorithm 3 takes only O(m2) time and O(m) space. It is similar to the
fastest tour-splitting procedure in [47], the difference being the addition of
the “backtracking” step. This loop allows us to see if a saving can be made
by “backtracking” along the kth trip. That is, while considering the kth
trip, we check if there exists an index j, with cu[k− 1] < j ≤ cu[k]− 1, such
that ending the kth trip at ℓ′i+j and starting the (k + 1)th trip from ℓ′i+j+1

increases the cumulative number of required links serviced so far. We found
that this extra step frequently leads to a reduction in the number of trips,
with negligible additional computing effort.

To see how backtracking works, suppose len[1] = 10, len[10] = 11 and
len[11] = 9. When i = 1 and k = 1, before we start backtracking, we obtain
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cu[1] = len[1] = 10 and cu[2] = cu[1] + len[11] = 10 + 9 = 19. So, the
first trip in our solution services 10 links and the second services 9. Now
consider what happens when we apply backtracking. When j = 9, we have
j+ len[i+ j] = 9 + 11 = 20 > 19 = cu[2]. Thus, we reduce cu[1] from 10 to
9 and increase cu[2] from 9 to 11. After this change, the first trip services
9 links and the second services 11. Thus, the total number of links serviced
by the first two trips has increased from 19 to 20.

3.7 Time reduction phase

The procedure in the previous subsection yields a collection of N trips. Let
r = N mod h. If r = 0, we have a feasible MCARPIFD solution, and our
upper-bounding procedure ends. If r ̸= 0, however, then we do some more
work. Let U = h⌈N/h⌉. By definition, U is an upper bound on the minimum
number of trips needed. Moreover, there is a chance that, if we use U trips
instead of N , we will be able to reduce the maximum trip duration.

To deal with this, we use the “len[i,β]” values, that we mentioned at
the end of Subsection 3.5. In more detail, for β ∈ {5, 10, 15}, we re-run
Algorithm 3, with the “len[i]” values replaced with the “len[i,β]” values.
If we find a solution that uses no more than U trips, but has a smaller
maximum trip duration, we replace the old solution with the new solution.

For example, suppose that T = 8, h = 10 and N = 33. We have U = 40
and r = 3. Suppose that the number of trips used for β = 5, 10 and 15 is
35, 38 and 41, respectively. We now have an MCARPIFD solution that uses
no more than 40 trips and has a maximum trip duration of no more than
7 hours and 50 minutes. (Note that the maximum trip duration in that
particular solution may well be even smaller than that.)

4 Lower Bounds

In this section, we present a lower-bounding algorithm for the MCARPIFD.
This algorithm is specifically designed to give bounds of acceptable quality
in just a couple of minutes.

The algorithm actually computes lower bounds on three quantities: the
total number of trips, the total number of visits to intermediate facilities, and
the total travel time. We denote these bounds by K, α and τ , respectively.
The following six subsections present the key components of our algorithm.

4.1 Initial lower bounds

The first step is to compute initial estimates of K, α and τ . To do this, we
use Algorithm 4. In this algorithm, t(ℓ) denotes the minimum time needed
to travel from the depot to an end-node of link ℓ, t′(ℓ) denotes the minimum
time needed to travel from an end-node of ℓ to the nearest node in I, t′′(ℓ)
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denotes the minimum time needed to travel from a node in I to an end-node
of ℓ, and t′′′(ℓ) denotes the minimum time needed to travel from an end-node
of ℓ to the depot via a node in I.

Lemma 1. The bounds produced by Algorithm 4 are valid.

Proof. Let K ′ be the minimum number of trips in an optimal solution. If
K ′ = K, then the total number of times a vehicle travels from a required
link to a node in I is at least α −K, and the same is true for the number
of times a vehicle travels from a node in I to a required link. The result is
then immediate.

Suppose instead that K ′ > K. Consider one specific trip. It forms a
closed walk in G that includes the depot and passes through an intermediate
facility at least once. Suppose we short-cut this closed walk, by omitting
the depot, and then add the resulting closed walk to one of the other trips.
The cost of the resulting (possibly infeasible) solution is no larger than
that of the original. Repeating this argument, if necessary, we obtain a
(possibly infeasible) solution that costs no more than the optimal solution,
but uses only K trips. We can then apply the argument in the preceding
paragraph.

4.2 Auxiliary digraph

For what follows, it is helpful to define an auxiliary directed graph, which
we denote by Ḡ = (V̄ , Ā). This digraph is created as follows. Initially, Ḡ is
a copy of G. We then replace each edge e ∈ E with a pair of directed arcs,
one in each direction.

Next, we add some “dummy” nodes and arcs. We add a node 1∗ and a
node set I∗, which can be thought of as copies of the depot and intermediate
facilities, respectively. For each node v ∈ VR, we add the arc (1∗, v) to Ā.
(This arc represents the journey from the depot to the v.) For each node
v ∈ VR and each dummy node i∗ ∈ I∗, we add the arcs (v, i∗) and (i∗, v)
to Ā. (These arcs represent journeys from v to an intermediate facility, or
vice-versa.) Finally, for each i∗ ∈ I∗, we add the arc (i∗, 1∗) to Ā. (These
arcs represent journeys from intermediate facilities to the depot, at the end
of the day.)

For each dummy arc (u, v) ∈ Ā, we let tuv denote the time taken to travel
from u to v in G if one follows the quickest path. To compute these times, it
suffices to call Dijkstra’s single-source shortest-path algorithm |I|+ 1 times
in G. This takes O(|I|(|L|+ |V | log |V |)) time.

For notational ease, we identify tuv and tvu for each edge {u, v} ∈ E,
and we identify suv and svu for each edge {u, v} ∈ ER. We also let δ̄+(S)
and δ̄−(S) denote the set of arcs in Ḡ leaving and entering S, respectively.
Finally, we let ĀR denote the set of arcs in Ā that represent arcs in LR.

13



(That is, there are two arcs in ĀR for each edge in ER, plus one arc for each
arc in AR.)

4.3 Initial LP relaxation

Our initial LP relaxation is an extension of the one for the CARP mentioned
in Subsection 2.1. It uses two kinds of variables, called x and y.

For each edge {u, v} ∈ ER, the binary variables xuv and xvu indicate
the direction in which {u, v} is serviced. (For notational simplicity, we also
define a variable xuv for each arc (u, v) ∈ AR. These latter variables are fixed
to 1.) For each arc (u, v) ∈ Ā, the general-integer variable yuv represents
the total number of times that (u, v) is deadheaded.

We remark that the y variables for the dummy arcs take into account any
deadheading that occurs while vehicles are (a) on the way from the depot to
the first link that they service, (b) travelling to and from the intermediate
facilities, or (c) returning to the depot at the end of the day. The y variables
for the remaining arcs deal with any additional deadheading.

The initial LP is then as follows:∑
a∈Ā taya (3)

xuv + xvu = 1 ({u, v} ∈ ER) (4)

xuv = 1 ((u, v) ∈ AR) (5)

y(δ̄+(1∗)) ≥ K (6)

y(δ̄+(I∗)) ≥ α (7)

x(δ̄+R(v)) + y(δ̄+(v)) = x(δ̄−R(v)) + y(δ̄−(v)) (v ∈ VR) (8)

y(δ̄+(v)) = y(δ̄−(v)) (v ∈ V̄ \ VR) (9)

y1∗,v +
∑

i∗∈I∗ (yv,i∗ + yi∗,v) ≤ |δR(v)| (v ∈ VR) (10)

xuv, xvu ≥ 0 ({u, v} ∈ ER)

yuv ≥ 0 ((u, v) ∈ Ā).

The objective function (3) represents the total amount of time spent dead-
heading. Constraints (4) and (5) ensure that each required link is serviced.
Constraint (6) ensures that at least K trips are used. Constraint (7) ensures
that the intermediate facilities are visited at least α times. Constraints (8)
and (9) ensure that the number of vehicles leaving each node is equal to the
number of vehicles arriving. Constraints (10) arise due to the fact that each
node in VR is incident on a small number of required links. The remaining
constraints are trivial.

We remark that, due to the sparsity of road networks, our initial LP
contains only O(n) constraints. In practice, it can be solved in a few seconds,
even for very large instances.
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4.4 Cutting-plane algorithm

Recall that the industrial partner wanted lower bounds to be available within
a couple of minutes. Since our initial LP was typically solved in a few
seconds, we had some spare time. This led us to devise a cutting-plane
algorithm, which uses analogues of the capacity inequalities (1) and R-odd-
cut inequalities (2).

To this end, we define:

k(S) =

⌈∑
ℓ∈LR(S)∪∆R(S) qℓ

Q

⌉
(∅ ≠ S ⊆ V ).

The analogue of the capacity inequalities is then:

y(δ̄+(S) ∪ δ̄−(S)) ≥ 2k(S)− |∆R(S)| (∅ ≠ S ⊆ V ). (11)

The analogue of the R-odd-cut inequalities is:

y(δ̄+(S) ∪ δ̄−(S)) ≥ 1 (S ⊂ V : |∆R(S)| odd). (12)

For a high-level description of our algorithm, refer to Algorithm 5. Note
that, each time the LP is re-optimised, we check whether any of K, α or τ
can be increased.

Due to the limited computation time available, we do not use sophisti-
cated separation algorithms. Instead, we use the following fast and simple
heuristic:

1. Let y∗ be the value of the vector y at the current LP solution.

2. Let ϵ = 0.01.

3. Construct a graph G∗ = (V,E∗) as follows. For each arc (u, v) ∈ Ā
such that {u, v} ⊂ V and y∗uv ≥ ϵ, the edge {u, v} is included in E∗.

4. Check whether G∗ is connected. If not, check each connected com-
ponent, to see if it violates a capacity inequality (11) or R-odd cut
inequality (12).

5. Expand E∗ as follows. For each arc (u, v) ∈ ĀR such that the edge
{u, v} is not already in E∗, insert {u, v} into E∗.

6. Repeat step 4.

Our implementation of this heuristic runs in O(|V | |L|) time (because there
are O(|V |) components, and checking each one takes O(|L|) time).

In our preliminary computational tests, we found that the cutting-plane
algorithm exhibited a pronounced “tailing-off” effect. That is, the lower
bound improved rapidly in the early iterations, but extremely slowly after
that. For this reason, we run the algorithm for one minute only for any
given instance.
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4.5 Additonal flow variables

Observe that the cutting planes (11) take the vehicle capacity into account,
but not the time deadline. In principle, it is possible to strengthen the
right-hand side of (11) by taking time into account. However, we could not
find a fast algorithm for doing this. Instead, we found it more effective to
introduce additional variables and constraints to represent the flow of time.

Assume without loss of generality that all trips begin at time 0. For
each arc (u, v) ∈ Ā, let fuv be a non-negative continuous variable, with the
following interpretation. If the arc is not traversed by any vehicle, then fuv
takes the value 0. If the arc is traversed exactly once, then fuv represents
the time at which the corresponding vehicle departs from node u. If the arc
is traversed several times, then fuv represents the sum of the corresponding
elapsed times. In other words, the f variables are “aggregated” over all
trips, just like the y variables.

Before presenting the constraints, we need a little more notation. For
each node u ∈ V̄ , let e(u) and ℓ(u) be the earliest and latest times at which
a vehicle can arrive at node u, or depart from node u, respectively. (These
values can be computed with two calls to Dijkstra’s algorithm.)

We then add the following constraints to the LP:

f(δ̄+(v)) = f(δ̄−(v)) +
∑

a∈δ̄−(v) taya (v ∈ V̄ \ (VR ∪ {1∗})
f(δ̄+(v)) = f(δ̄−(v)) +

∑
a∈δ̄−R (v) saxa +

∑
a∈δ̄−(v) taya (v ∈ VR \ {1∗})

fuv ≥ e(u)yuv ((u, v) ∈ Ā \ ĀR)

fuv ≥ e(u)(xuv + yuv) ((u, v) ∈ ĀR)

fuv ≤ (ℓ(v)− tuv)yuv ((u, v) ∈ Ā \ ĀR)

fuv ≤ (ℓ(v)− suv − tuv)xuv + (ℓ(v)− tuv)yuv ((u, v) ∈ ĀR).

The interpretation of these constraints is straightforward and omitted for
brevity.

5 Computational Results

For all of our computational experiments, we used a laptop with an 11th Gen
Intel Core i7 processor, running under Windows 10 at 3GHz with 16GB of
RAM. All algorithms were implemented with C# in the .NET framework, and
compiled with Microsoft Visual Studio 2019. To solve the LP relaxations,
the code called on the dual simplex solver of CPLEX (v. 12.10).

5.1 Test Instances

Since we were asked by the industrial partner not to share details of their
MCARPIFD instances, we created some artificial instances for this paper.
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We did however take care to ensure that they are realistic. In particular,
we used real road network data, extracted using the Python package OSMnx
[11].

We selected five cities: Seoul, New York, Istanbul, Hanoi and London.
For each city, we selected a central landmark. After that, we did the follow-
ing for each city and each value β ∈ {2500, 5000, 7500, 10000}. We computed
the smallest square, centred on the landmark, that contains at least β nodes.
Table 1 shows, for each of the five cities, the name of the landmark and the
length (and therefore also width) of the four squares, in metres.

For each of the 20 resulting squares, we created a mixed graph G as
follows. The set of links L was determined by the set of roads that were
wholly contained in the square. After that, we set V to the set of nodes that
were incident on at least one link in L.

Unfortunately, we found that a few of the resulting mixed graphs were
not strongly connected. To deal with this, we used Kosaraju’s Algorithm
[3] to compute the strongly connected components for each graph. We then
redefined G to be the largest component in each case. Note that, by con-
struction, |V | is always smaller than β.

The next step was to decide which links were required. For simplicity, we
just made each link required with probability 1/2. Some summary statistics
for the resulting 20 graphs can be found in Table 2. Note that all cities have
a significant number of one-way streets.

We now describe the default parameters used. (We explore the effect
of varying these parameters in Subsection 5.3). We set the time limit T to
8 hours, the vehicle capacity Q to 10.5 tonnes, and the travelling speed to
30 kph. We set h to 10, which means that each household has a weekday
collection every two weeks. The depot was placed at the top-left, while
two intermediate facilities were located at the top-right and bottom-left.
Two-way streets were treated as edges.

The servicing times sℓ, measured in hours, followed a log-normal dis-
tribution. The mean and standard deviation in the log scale were set to
−3.933 and 1.005, respectively. To set the demands qℓ, we used the regres-
sion equation qℓ = 0.0035+2.7879sℓ+ϵℓ, where the noise terms ϵℓ were i.i.d.
normal variables with mean 0 and standard deviation 0.0386. (All of these
parameters were based on our experience with real instances.)

Full details of all instances will be made available at the Lancaster Uni-
versity Data Repository2.

5.2 Results for the default scenario

First we present the results obtained with our upper-bounding procedure.
Table 3 shows the following for each of the 20 instances: the city name, the

2http://www.research.lancs.ac.uk/portal/en/datasets/search.html
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number of nodes (|V |), the number of trips in the heuristic solution (K), the
number of visits to the intermediate facilities (α), the mean and maximum
trip durations (in hours), and the computing time (in seconds).

As one might expect, the number of trips scales roughly linearly with the
number of nodes, and so does the number of visits to intermediate facilities.
Note that, in all instances, α ≈ 2K. This means that the vehicles tend to
visit an intermediate facility twice in each trip. This is similar to what we
encountered in practice.

The mean and maximum trip durations are well within 8 hours in every
case. It is clear that the procedure mentioned in Subsection 3.7 has suc-
ceeded in reducing the maximum duration in all cases. Closer inspection of
the output showed that, for some instances, the last trip generated had a
significantly shorter duration than all of the others. This suggests that one
could reduce the maximum duration further, while keeping the number of
trips the same, by applying some kind of local search procedure.

As for the running times, the heuristic runs in less than 25 seconds in all
cases. Our industrial partner was very happy with the upper bounds and
running times.

We now turn our attention to the lower-bounding procedure. Table 4
shows the following for each instance: the city name and the number of
nodes (as before); the lower bounds on the number of trips (K), number of
visits to the intermediate facilities (α) and total travel time (τ); the ratio
between the lower and upper bounds on K and τ ; and the computing time
in seconds.

We see that the lower-bounding procedure produces excellent lower bounds
on K and α, and good lower bounds on τ , within one and a half minutes.
Moreover, despite the severe restrictions on computing time, our procedures
have found the proven optimal value of K for 18 instances. We suspect that,
for the remaining two instances, one could find a solution that uses 10 fewer
trips (and therefore one fewer vehicle), given additional computing time.

5.3 Sensitivity analysis

For completeness, and to aid insight, we conduct a sensitivity analysis. We
experiment with varying three parameters: the number of weeks between
consecutive visits to customers, the number of intermediate facilities, and
the deadheading speed. We also examine the effect of having to service each
required edge twice, once in each direction.

5.3.1 Visit frequency

In our default scenario, h is 10, which means that each customer is visited
every two weeks. We explore the effect of changing h to 5 (corresponding to
weekly visits) and 15 (corresponding to one visit every three weeks). Note
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that, when h is reduced to 5, the demand for each required link is halved.
Similarly, when h is increased to 15, the demands are multiplied by 1.5.

Figure 2 shows the gap between the lower and upper bounds on the
number of trips K, for all 20 instances and for the three values of h. In each
box, the first 5 lines represent the default setting (h = 10), the next 5 lines
represent the case h = 5, and the last 5 lines represent the case h = 15. (In
the online version, the lines are colored blue, red and green, respectively.)
A line of zero length indicate that the upper and lower bounds coincide.
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Figure 2: Estimates of K when h varies.

Remarkably, changing the value of h does not make a big difference to the
number of trips. Closer inspection of the output revealed that an increase
in h usually led to a significant increase in α (the number of visits to the
intermediate facilities), but not much difference to K or τ . This suggests
that larger values of h are much more economical for the service provider,
since they significantly reduce the number of trips per week (and therefore
also the number of vehicles required). We remark that some local councils in
the UK recently suggested increasing h from 10 to 15, but they were forced
to abandon the idea due to opposition from the public.

5.3.2 Number of intermediate facilities

In our default scenario, there are two intermediate facilities (IFs). We now
explore the effect of having just one (located in the top-right of the square)
or three (located at top-right, bottom-left and bottom-right).

Figure 3 is similar to Figure 2, except that the three cases are |I| = 2, 1, 3.
It is apparent that changing the number of IFs has no effect on the number
of trips in almost all cases. Closer inspection of the output showed that
increasing the number of IFs led to a small increase in α, a small decrease
in τ , and a small decrease in the maximum trip duration. This is because
vehicles can travel to the nearest IF to unload, instead of being forced to go
to one specific IF.
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Figure 3: Estimates of K when |I| varies.

5.3.3 Deadheading speed

Next, we explored the effect of changing the deadheading speed from 30kph
to either 20kph or 40kph. Figure 4 shows the resulting estimates of K.
As one would expect, the number of trips needed tends to decrease as the
deadheading speed increases. The effect is however fairly small. This is
probably because, in an urban setting, the majority of time is spent servicing
rather than deadheading. For the same reason, increasing the deadheading
speed tended to lead to only small decreases in τ . As for α, there was no
discernable pattern.
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Figure 4: Estimates of K when deadheading speed varies.

5.3.4 Two-lane service

Finally, we consider the case in which each required edge must be serviced
twice, once in each direction. (More precisely, each edge in ER is replaced
by a pair of anti-parallel required arcs, each with half the demand.)
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Figure 5 shows the resulting bounds on K. As one might expect, requir-
ing edges to be serviced twice tends to lead to an increase in the number
of trips. Again, however, the effect is less marked than one might expect.
A possible explanation is that replacing each required edge with a pair of
required arcs causes the total number of R-odd nodes to decrease. As a
result, the amount of deadheading tends to decrease, even if the amount of
servicing increases. A similar pattern was seen with τ .
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Figure 5: Estimates of K with one or two visits to required edges.

We remark that, throughout our experiments, the lower bound on τ was
never less than 83% of the upper bound. In fact, in 85% of the cases, it
was above 90%. We also remark that requiring edges to be serviced twice
caused our upper-bounding procedure to take around twice as long. This is
because the giant tour becomes nearly twice as large. On the other hand,
there was no significant increase in the time taken by our lower-bounding
procedure, due to the fact that we imposed a limit of one minute for the
cutting-plane phase.

6 Conclusion

In this paper, we have considered a “rich” arc routing problem, with vehicle
capacities, a time deadline, intermediate facilities, a mixture of one- and
two-way streets, different routes on different days, and fairness considera-
tions. For this problem, our industrial partner wanted algorithms that could
produce lower and upper bounds within just a couple of minutes. We were
able to accomplish this by using a judicious combination of known and new
techniques.

We can think of three possible topics for future research. The first is
the development of local search heuristics to improve the upper bounds ob-
tained with our approach. The second is the development of a heuristic to
decompose the problem into a number of smaller problems. (This is called
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“districting” in the arc routing literature [14, 36].) The third is the devel-
opment of an exact algorithm for the single-vehicle version of the problem.
Such an algorithm could perhaps be used to “polish” the individual trips
that are generated by our heuristic, or indeed the trips found by the expert
trip planners.
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[17] Á. Corberán & G. Laporte (eds) (2015) Arc Routing: Problems, Meth-
ods, and Applications. Philadelphia, PA: SIAM.

[18] M. Dror (ed.) (2000) Arc Routing: Theory, Solutions and Applications.
Dordrecht: Kluwer.

[19] J. Edmonds & E.L. Johnson (1973) Matching, Euler tours and the
Chinese postman. Math. Program., 5, 88–124.

[20] R.W. Eglese (1994) Routeing winter gritting vehicles. Discr. Appl.
Math., 48, 231–244.

[21] G. Ghiani, F. Guerriero, G. Laporte & R. Musmanno (2004) Tabu
search heuristics for the arc routing problem with intermediate facilities
under capacity and length restrictions. J. Math. Model. Alg., 3, 209–
223.

[22] G. Ghiani, G. Improta & G. Laporte (2001) The capacitated arc routing
problem with intermediate facilities. Networks, 37, 134–143.

[23] B. Golden, S. Raghavan & E. Wasil (eds.) (2008) The Vehicle Routing
Problem: Latest Advances and New Challenges. Boston, MA: Springer.

[24] B.L. Golden & R.T. Wong (1981) Capacitated arc routing problems.
Networks, 11, 305–15.

23



[25] L. Gouveia, M.C. Mourão & L.S. Pinto (2010) Lower bounds for the
mixed capacitated arc routing problem. Comput. Oper. Res., 37, 692–
699.

[26] C. Hierholzer (1873) Ueber die Möglichkeit, einen Linienzug ohne
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Algorithm 3: Trip Selection

input : Number of required links m and trip length len[i] for
i = 1, . . . ,m

Set N to ∞;
for i = 1 to m do

Set k to 1, cu[0] to 0 and cu[1] to len[i];
while cu[k] < m do

Set cu[k + 1] to cu[k] + len[i+cu[k]];
// Check if all required links have been served

if cu[k + 1] ≥ m then
Set cu[k + 1] to m;

else
// Check if we can serve more required links by

backtracking

for j = cu[k-1]+1 to cu[k]-1 do
if j + len[i+ j] > cu[k + 1] then

Set cu[k] to j and increase cu[k + 1] to j +
len[i+ j];

end

end

end
Increase k by 1;

end
if cu[k] ≥ m then

Set cu[k] to m;
end
if k < N then

Set N to k and i∗ to i;
for k = 1 to N do

Set cu∗[k] to cu[k];
end

end

end
output: Number of trips N , starting point i∗,

and collection of trips (represented by cu∗[1] to cu∗[N ])
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Algorithm 4: Initial Lower Bounds

input : mixed graph G = (V,L), sets LR ⊆ L, I ⊂ V ,
demands qℓ, servicing times sℓ, traversal times tℓ,
vehicle capacity Q, deadline T , positive integer h

for i = 1, . . . , |LR| do
let ℓi denote the ith closest required link from the depot;
let ℓ′i denote the ith closest required link to the set I;
let ℓ′′i denote the ith closest required link from the set I;
let ℓ′′′i denote the ith closest required link to the depot via a
node in I;

end

Set K to h and set α to max
{
h,

⌈∑
ℓ∈LR

qℓ/Q
⌉}

;

repeat

Let τ =
∑
ℓ∈LR

sℓ +

K∑
i=1

t(ℓi) +

α−K∑
i=1

t′(ℓ′i) +

α−K∑
i=1

t′′(ℓ′′i ) +

K∑
i=1

t′′′(ℓ′′′i );

If τ/T > K, then set K to K + h;
If K > α, then set α to K;

until no further increase in K is possible;
output: Initial lower bounds K, α and τ .
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Algorithm 5: Cutting-Plane Algorithm

input : mixed graph G = (V,L), sets LR ⊆ L, I ⊂ V ,
demands qℓ, vehicle capacity Q, deadline T ,
positive integer h, initial lower bounds K, α, τ

Construct the initial LP relaxation;
Solve the initial LP via primal simplex;
repeat

Update τ ;
Set improved to false;
if τ/T > K then

Set improved to true;
Set K to K + h and update constraint (6);
if K > α then

Set α to K and update constraint (7);
end

else
Call separation algorithms for constraints (11) and (12);
if any violated inequalities are found then

Set improved to true;
Add the inequalities to the LP;

end

end
Re-optimise the LP via dual simplex;
Delete all cutting planes that have slack > 0.1;

until improved = false;
output: Final lower bounds K, α and τ .

City Centre Len 1 Len 2 Len 3 Len 4

Seoul Arario Gallery Seoul 2229.5 3032.5 3567.5 4088.1
NewYork RidgeWood 2969.0 3942.0 4892.6 5676.8
Istanbul City Center AVM 1269.0 1839.0 2361.0 2811.0
Hanoi National Cinema Center 1947.0 2811.0 3559.0 4299.0
London MayFair 1898.0 2811.0 3516.0 4040.0

Table 1: Computation of initial squares.

28



City |V | |L| |A| |LR| |AR|

Seoul

2446 3483 722 1760 353
4972 7034 1186 3479 583
7478 10625 1535 5374 725
9936 14134 1817 7122 951

New York

2447 4072 2258 2057 1159
4939 8334 5058 4207 2547
7416 12630 7634 6285 3822
9849 16877 10213 8373 5084

Istanbul

2490 3776 368 1925 176
4961 7627 921 3745 464
7432 11454 1501 5741 743
9862 15219 2353 7696 1221

Hanoi

2356 3150 779 1570 377
4918 6482 1558 3199 774
7439 9951 2186 4977 1080
9853 13222 2848 6630 1474

London

2437 3505 1779 1760 888
4927 6950 2900 3537 1500
7415 10296 3945 5034 1957
9899 13508 4628 6674 2278

Table 2: Summary statistics for 20 graphs
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Duration (hrs)
City |V | K α mean max Time (s)

Seoul

2446 10 19 6.87 7.50 1.20
4972 20 39 7.43 7.75 2.35
7478 30 59 7.56 7.75 5.13
9936 40 79 7.74 7.91 8.71

New York

2447 20 28 4.44 4.67 4.77
4939 30 59 6.49 6.67 7.12
7416 40 79 7.14 7.25 10.80
9849 60 119 7.01 7.08 23.13

Istanbul

2490 10 20 6.80 7.50 1.62
4961 20 39 7.05 7.33 4.93
7432 30 60 7.54 7.75 6.76
9862 40 79 7.68 7.83 11.94

Hanoi

2356 10 19 6.13 6.75 2.07
4918 20 39 6.73 7.00 4.96
7439 30 59 7.19 7.42 7.32
9853 40 79 7.36 7.50 14.12

London

2437 10 19 6.77 7.41 1.48
4927 20 39 7.31 7.67 3.19
7415 30 59 7.17 7.33 9.65
9899 40 79 7.37 7.50 13.70

Table 3: Upper bounding results under default scenario

30



City |V | K α τ Ratio K Ratio τ Time (s)

Seoul

2446 10 16 63.4 1.000 0.923 65.54
4972 20 34 137.3 1.000 0.924 67.67
7478 30 52 207.8 1.000 0.916 71.50
9936 40 70 283.0 1.000 0.914 85.59

New York

2447 10 20 79.2 0.500 0.891 63.40
4939 30 41 176.5 1.000 0.906 65.44
7416 40 60 259.8 1.000 0.909 68.83
9849 50 81 365.3 0.833 0.868 82.12

Istanbul

2490 10 18 64.6 1.000 0.949 62.51
4961 20 36 133.3 1.000 0.945 70.03
7432 30 56 211.7 1.000 0.935 74.92
9862 40 75 285.9 1.000 0.930 85.95

Hanoi

2356 10 15 57.4 1.000 0.937 62.41
4918 20 31 124.6 1.000 0.925 76.81
7439 30 48 195.9 1.000 0.908 68.97
9853 40 64 268.0 1.000 0.911 74.66

London

2437 10 17 63.6 1.000 0.939 61.90
4927 20 34 135.5 1.000 0.926 71.26
7415 30 48 196.9 1.000 0.915 74.19
9899 40 65 268.5 1.000 0.912 73.50

Table 4: Lower bounding results under default scenario
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